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Abstract

Extracellular vesicles (EVs) are a heterogeneous population of naturally occurring secreted small vesicles, with
distinct biophysical properties and different functions both in physiology and under pathological conditions. In
recent years, a number of studies have demonstrated that EVs might hold remarkable potential in regenerative
medicine by acting as therapeutically promising nanodrugs. Understanding their final impact on the biology of
specific target cells as well as clarification of their overall therapeutic impact remains a matter of intense debate.
Here we review the key principles of EVs in physiological and pathological conditions with a specific highlight on
the most recently described mechanisms regulating some of the EV-mediated effects. First, we describe the current
debates and the upcoming research on EVs as potential novel therapeutics in regenerative medicine, either as
unmodified agents or as functionalized small carriers for targeted drug delivery. Moreover, we address a number of
safety aspects and regulatory limitations related to the novel nature of EV-mediated therapeutic applications.
Despite the emerging possibilities of EV treatments, these issues need to be overcome in order to allow their safe
and successful application in future explorative clinical studies.

Introduction

Extracellular vesicles (EVs) are lipid membrane vesicles
containing a heterogeneous range of molecules. Among
those so far described are various classes of nucleic acids
as well as soluble and transmembrane proteins [1-3],
which are involved in intercellular communication, im-
mune modulation, senescence, proliferation and differ-
entiation among various processes [1-4]. Cells release
different types of naturally occurring EVs including exo-
somes, microvesicles (i.e. shedding vesicles) and apop-
totic bodies [5]. The release of EVs is an extremely
common and widespread biological process, which is
conserved across eukaryotes, bacteria and archaea and is
believed to exist in most forms of life [6]. While missing
in the past, the field has more recently been using a
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terminology for EV nomenclature following the mecha-
nisms of vesicle generation [7, 8].

Exosomes originate in multivesicular bodies (MVB).
When MVB fuse with the plasma membrane, the intra-
luminal vesicles are released from the cell and are subse-
quently referred to as exosomes. Exosomes are reported
to be between 40 and 150 nm in size. Microvesicles are
shed directly from the plasma membrane and can be lar-
ger than exosomes (50—1000 nm) [9]. Apoptotic bodies
originate at the cell membrane as cells undergo apop-
tosis. EVs can interact with target cells using different
mechanisms: transmembrane proteins on EVs interact
with receptors on the target cell membrane and initiate
distinct signalling cascades [10, 11]; or EVs directly fuse
with their target cells by (prior to or after) endocytosis/
transcytosis, with subsequent release of its content into
the cytosol of the target cell [10].

EVs/exosomes have been implicated in a broad, and
still largely uncharacterized, range of physiological func-
tions, such as protein clearance [12], immunity [4], sig-
nalling [11] and even gene regulation [13], but they have
also been identified as important players in pathological
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processes. EVs/exosomes are thus implicated in infec-
tions [14] and cancer [15], and seem also to play a
major—yet to be fully characterized—role in neurode-
generative diseases, such as Parkinson’s disease, Alzhei-
mer’s disease (AD), multiple sclerosis (MS), lysosomal
storage disorders [16], amyotrophic lateral sclerosis,
stroke and prion disease [17]. Implication in such a high
number of both pathological and physiological functions
makes EVs not only potential biomarkers of diseases but
also good candidates for the development of new cell-
free (acellular) therapies.

EVs and regenerative medicine

Regenerative medicine aims at the restoration of a dam-
aged or malfunctioning tissue by applying cell-based or
stem cell-based therapies, small molecules and tissue
engineering-based or material-based approaches [2]. Re-
cent research focuses on strategies that allow functional
restoration of a damaged tissue by cell-free (acellular)
approaches or using autologous cell and tissue sources
[2] (UKRMP Hub for Acellular (smart material) ap-
proaches for therapeutic delivery; http://www.ukrmp.org.uk/
hubs/acellular/acellular-hub-news-and-events/). At the same
time, latest developments in the field of EVs have uncovered
novel functions for EVs in various processes including
angiogenesis, extracellular matrix (ECM) remodelling and
regulation of immune responses [11, 18, 19], which may
also be of interest for tissue engineering [2]. Taken to-
gether, EVs derived from various cell types are thought to
play an important role in regeneration of various disease
models. Although we are far from effective therapies and
only a few clinical trials have been started in most cases, it
is worth discussing promising results obtained in some
relevant animal disease models.

Myocardial infarction

Myocardial infarction leads to diffuse death cardiomyo-
cytes [20], which are replaced by a collagen-based scar
due to the negligible regenerative capacity of the adult
mammalian heart. Necrosis of ischemic cardiomyocytes
also triggers an intense inflammatory reaction that
serves to clear the wound from dead cells and matrix
debris and contributes to formation of a collagen-based
scar [21].

Indirect evidence suggests that EVs participate in the
processes of cardiovascular diseases from atherosclerosis
and myocardial infarction to heart failure. Consequently,
they are worth exploiting for therapy, for prognosis and
as biomarkers for health and disease [22]. Several experi-
mental data support this concept. As such, mesenchymal
stem cell (MSC)-derived EVs have been demonstrated to
improve recovery when injected into laboratory animals
with experimental myocardial infarction and to reduce
the infarct size area by promoting neoangiogenesis [23].
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Besides, EVs have been confirmed as the cardioprotec-
tive component in the MSC secretome [23]. Similar re-
sults have further highlighted the importance of EVs not
only as pro-angiogenic cargo particles but also as pro-
tector factors from senescence and cell death [24]. Fur-
thermore, intracardial injections of conditioned medium
from MSC overexpressing the survival gene (AktlAkt-
MSC) limited infarct size and improved ventricular
function by reducing the rate of apoptosis [25, 26].
MSC-derived EVs displayed the same effects in mice
following myocardial ischemia/reperfusion injury by
activating the PI3K/Akt pathway, and in turn increasing
ATP levels and reducing oxidative stress [23, 27] (Fig. 1).

Acute kidney injury

Acute kidney injury (AKI) is a syndrome characterized
by the acute loss of kidney function that leads to in-
creased serum creatinine or oliguria. To mimic the dif-
ferent clinical settings of AKI and to set up and/or
improve possible new treatments, several experimental
animal models have been developed in which EVs have
been tested as a new experimental therapeutic option
[28]. Human MSC-derived EVs have been reported to
stimulate proliferation and apoptosis resistance of tubu-
lar epithelial cells in vitro [29]. In vivo, morphological
and functional recovery of different experimental animal
models of acute and chronic kidney is observed after in-
jection of MSC-derived EVs, in a manner comparable
with that observed after transplantation of parental
MSCs. Interestingly, the pretreatment of MSC-derived
EVs with RNase (i.e. to inactivate their RNA cargoes) ab-
rogated these protective effects. Kidney regeneration has
been also observed in an EV-xenotransplantation study
[29, 30]. Further studies confirmed the protective effects
of EVs in kidney injury models by a CX3CL1-mediated
mechanism [31-33], by inhibition of apoptosis through
the regulation of extracellular signal-regulated kinase
(ERK) 1, ERK 2 and mitogen-activated protein kinase
(MAPK) pathways [33], or by transferring anti-apoptotic
microRNAs (miRNAs) [34]. Moreover, injected EVs are
able to produce an increase in proliferation, as reported
in an AKI model [35] (Fig. 1).

Neurological disorders

Extensive studies have implicated EVs in a broad range
of neurological disorders, and in some cases their poten-
tial value as targets for treatment development and as
markers for diagnosis. For example, in a model of MS,
Pusic et al. [36] demonstrated that dendritic cell (DC)-
derived EVs bear cytoprotective effects, as they promote
remyelination of damaged nerve fibres. Moreover,
Schwann cell-derived EVs mediated protective effects
and induced axonal regeneration in in-vitro and in-vivo
models of sciatic nerve injury [37]. The relevance of EVs
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Central Nervous System

- Functional recovery and enhancement of neurite remodelling [36]
- Reduction of cell death in oxygen/glucose deprivation [35]

- Promotion of microvasculature formation [35]

- Promotion of neurogenesis and angiogenesis [36]

- Transfer of functional cytokine receptors [11]

- Increase of baseline myelination [37]

- Reduction of oxidative stress [37]

- Increase of remyelination [37]

- Axonal regeneration [39]

Lung

- Cytoprotection [48] Heart

- Reduction of ischemia/reperfusion injury [62, 63]
- Reduction of infarct size [60]

- Cytoprotection [58, 59]

- Reduction of apoptosis [61]

Liver |
- Reduction of drug-induced |
liver fibrosis [43] |
- Promotion of tissue
regeneration [44]

Kidney

- Increase of cell survival [50, 53]

- Reduction of inflammation [52]

- Induction of regenerative proliferation [51]

Gut/Bowel

- Reduction of progression in colitis [45]

- Delay of drug-induced linflammatory bowel disease (IBD) [47]
- Activation of wound repair responses [46]

MSCs and neural stem cells
A\

Fig. 1 Overview of effects of EV therapeutics in animal disease/injury models. Data in the figure include evidence from EVs collected from DCs,

as mediators for intercellular communication in the per-
ipheral nervous system between Schwann cells and
axons and its importance in axonal maintenance and re-
generation after nerve damage is well described [38].
This EV-mediated communication also exists in the cen-
tral nervous system (CNS), where oligodendrocyte-
derived exosomes contribute to the neuronal integrity by
releasing neurotransmitters [39] and embody a signalling
moiety involved in glia-mediated trophic support to
axons [40]. In the CNS, this oligodendrocyte—neuron
communication mediated by EVs has also been demon-
strated to promote myelination as described recently by
Pusic and Kraig [41], who have attributed part of this ef-
fect to exosomes containing miR-219.

Some advances have also been made in the field of
AD. Continuous administration of exosomes derived
from wild-type neuroblastoma or primary neurons in
the hippocampus ameliorates amyloid-beta (Ap) path-
ology and synaptic dysfunction in APPgycr,q mice. The
beneficial action of exosomes is associated with a
marked decrease in AP burden as well as with a signifi-
cant synaptophysin immunoreactivity rescue in AD
mice. Neuroprotection has been ascribed to the capabil-
ity of exosomes to trap AP and to promote its clearance
by microglia [42]. Finally, a protective effect in AD has
also been reported for MSC-derived EVs, since they
carry an active version of neprelysin, one of the key ApB-
degrading enzymes in the brain. Some experiments
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conducted in N2A cells overexpressing Ap demonstrated
that after EV treatment both extracellular and intracellu-
lar levels of AP were reduced [43]. Some improvements
mediated by EVs have also been described in stroke
pathology. A recent study in a middle cerebral artery oc-
clusion (MCAO) rat stroke model reported the possibility
that MSCs might communicate with brain parenchymal
cells via exosome-mediated miR-133b transfer, leading to
specific gene expression (i.e. connective tissue growth fac-
tor) regulation that in turn enhanced neurite outgrowth
and contributed to functional recovery [44] (Fig. 1).

Gastrointestinal diseases

Protective effects involving regeneration and/or regula-
tion of immunity are some of the functions that EVs
seem to mediate in gastrointestinal diseases. The appli-
cation of MSC-derived EVs resulted in decreased liver
damage in mouse models of drug-induced damage [45,
46]. In a model of experimentally induced colitis, the in-
jection of EVs derived from gut microbiota regulated in-
testinal immunity and haemostasis [47]. Furthermore,
administration of an exogenous glucocorticoid-regulated
protein annexin Al (ANXA1) mimicking peptide encap-
sulated within targeted polymeric nanoparticles signifi-
cantly accelerated healing of mucosal wounds in
experimentally DC-derived induced colitis [48]. In another
approach, transforming growth factor (TGF) betal gene-
modified exosomes delayed drug-induced inflammatory
bowel disease [49] (Fig. 1).

Graft rejection

Immune response constitutes a major issue in the con-
text of cell therapies and tissue engineering. Several cells
are involved including T cells, macrophages and DCs,
each with different functions including phagocytosis,
cytokine production and antigen presentation. EVs have
been shown to modulate innate immune response, turn-
ing them into good candidates to prevent rejection of a
graft [50]. On the other hand, MSC-derived exosomes
are able to induce a shift in macrophages toward an
anti-inflammatory M2 phenotype [51] and to directly
postpone allograft rejection in a rat kidney transplant-
ation model [52]. Finally, the importance of exosome-
mediated signalling in the immunological haemostasis of
the CNS is highlighted by evidence of a transfer of
oligodendrocyte-derived exosomes to microglia occur-
ring differentially depending on the immunological pro-
file of microglia [53] (Fig. 1).

EVs as drug delivery tool

In addition to the use of EVs as natural modifiers of dis-
ease, recent literature also describes the use of EVs as
(naturally occurring) non-synthetic drug delivery sys-
tems, due to their inherent lower immunogenicity and
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toxicity as well as their intrinsic homing and loading
abilities [1, 5]. Taking advantage of these properties, EVs
loaded by electroporation have been demonstrated to
functionally transfer small interfering RNAs (siRNAs)
and/or miRNAs to target cells [54—-57]. In addition to
artificial loading mechanisms, the endogenous cellular
machinery responsible for secreting miRNAs into EVs
can be exploited in order to load therapeutically relevant
siRNA and miRNA in EVs. Next to the loading, func-
tional delivery into target cells has also been shown by
several groups [57-59].

Moreover, other intrinsic properties of EVs—such as
their lipid composition, which enhances their stability in
circulation [60]; their protein content, which slows EV
clearance acting as inhibitors of complement and phago-
cytosis [61, 62]; and their ability to cross the blood—
brain barrier (BBB) [36, 54]—make them ideal vehicles
for delivery of exogenous therapeutic molecules ranging
from nucleic acids to other bioactive small molecules. In
fact, this concept has been already tested by loading EVs
with drugs such as doxorubicin in breast cancer xeno-
grafts [63].

The delivery of exogenous biomolecules requires a
suitable strategy to efficiently load the molecule into
EVs. Loading strategies can be divided into ex vivo strat-
egies, where circulating EVs are purified and then loaded
with the appropriate cargo, and in vitro strategies, where
cargo is incorporated during vesicle biogenesis.

Among the ex vivo strategies, the most broadly applied
is electroporation of EVs, a technique used to deliver
small-molecule drugs [63—65] and siRNA [54, 55]. How-
ever, this technique still requires further optimization,
because currently the electroporation conditions may in-
duce siRNA precipitation and yield low siRNA incorpor-
ation into EVs [66]. On the other hand, in vivo strategies
can be further divided into passive and active loading
approaches. The passive loading approaches exploit the
endogenous trafficking mechanisms of the cell and load-
ing is achieved by overexpression of the cargo molecule.
Although using cell machinery represents a clear poten-
tial advantage, this method also presents challenges be-
cause undesirable cargoes might also be loaded into EVs,
leading to unexpected (off vs. toxic) effects in target cells
[67]. The active loading approaches are aimed at increas-
ing the concentration of the cargo specifically within the
vesicles. The most commonly employed method relies
on the creation of a fusion protein between the molecule
of interest and a protein that is natively expressed in
EVs. One example is the N terminus of lactadherin
C1C2 domain, which is localized in the surface of the
vesicles and has been fused to different proteins or pep-
tides [54, 68].

Finally, another noteworthy loading method for nu-
cleic acids consists of exploiting viral packaging systems
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using hybrid vesicles called vexosomes. For example,
non-enveloped viruses such as adenoassociated virus
(AAV) [69] and hepatitis A virus [70] can be incorpo-
rated into EVs during propagation. Vexosomes contain-
ing AAV within the EVs can be less immunogenic due
to the EV component and, at the same time, the AAV
component is effective for gene delivery with long-term
stability in non-dividing cells [67]. As an alternative to
loading of RNA molecules, the loading of medication
for regenerative purposes could be an option. For ex-
ample, curcumin, a natural anti-inflammatory drug,
protects mice from lipopolysaccharide (LPS)-induced
brain inflammation and from progression of myelin oligo-
dendrocyte glycoprotein (MOG) peptide-induced expe-
rimental autoimmune encephalomyelitis (EAE) upon
intranasal administration in the form of curcumin-loaded
EVs [71].

When considering EVs as good candidates for thera-
peutics, one important aspect is their ability to spread
throughout the organism and to reach their target or-
gans. EVs have been administered intravenously, sub-
cutaneously, intranasally and systemically in mice. When
administered intravenously in laboratory animals, as
early as 30 minutes after injection EVs are found in the
spleen, liver, lung and kidneys, with some signal detect-
able in the brain, heart and muscle [72, 73]. Signal is no
longer detected in blood after 3 hours. Importantly,
intravenously or subcutaneously administered vesicles
preferentially bind to distinct cell types. As such, bio-
tinylated B-cell-derived EVs are primarily taken up by
hepatic and splenic macrophages 5 minutes after sys-
temic administration, with a rapid elimination of EVs
from the circulation, which resulted in a half-life of 2 mi-
nutes [74]. Locally administered EVs may achieve very
high local concentrations at target sites. In fact, intrana-
sal administration of vesicles offers an interesting ex-
ample which has already been tested in mice [75]. On
the other hand, many other promising routes for
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administration (e.g. intrathecal, intracerebral or intraven-
tricular) have not yet been tested [67]. In the context of
clinical trials and according to general considerations
stated by the US Food and Drug Administration (FDA)
(http://www.fda.gov/downloads/drugs), depending on
the route of administration, acute and repeated dose,
local toxicity studies with histological evaluation should
be conducted either in one or even two animal species.
Route-specific considerations should be also taken into
consideration (i.e. intravenous; compatibility with blood
should be evaluated).

Clinical trials

In this novel field the development of scientific research
has just begun, which is reflected by the limited number
of early-phase clinical trials that have been undertaken
over the past two decades in order to establish EVs as
therapeutic agents [76—80] (Table 1).

These data seem promising for future EV applications,
even if none of these studies [76—80] can truly be con-
sidered as addressing regenerative medicine. However,
the lack of published clinical trials in the context of re-
generative medicine does not mirror the scientific and fi-
nancial interests, as different stem cell companies are
undertaking significant efforts to develop EV therapeu-
tics derived from stem cells.

EVs: from bench to patients

Several issues must be considered and different prob-
lems need to be solved before finally translating EVs into
clinics.

Manufacturing vesicles for therapeutic use

The choice of an appropriate producer cell type must be
made. Mammalian vesicles can be either produced by
cell lines or by primary cells. Cells are constantly secret-
ing EVs, so producing them requires cell culture, as does
the manufacture of other biologics. Nevertheless, unlike

Table 1 Summary of current clinical trials with extracellular vesicles and their applications

EV source Application Proposed mechanism Clinical Status Reference
phase
Dendritic cell-derived  Metastatic melanoma Immunisation with autologous Phase | Completed showing safety  [76]
exosomes exosomes pulsed with MAGE 3 and feasibility
Ascite-derived Colorectal cancer Immunisation with ascite-derived Phase | Completed showing safety  [77]
exosomes immunotherapy exosomes and GM-CSF and feasibility
Dendritic cell-derived  Non-small cell lung Immunisation with autologous Phase | Completed showing safety  [80]
exosomes cancer (NSCLO) exosomes loaded with MAGE antigens and feasibility
MSC-derived Graft-versus host Donor-derived exosomes to Individual ~ Symptoms improved and [78]
exosomes disease (GvHD) recapitulate the immunomodulatory patient stabilized for several months.
properties of MSCs Patient died of pneumonia
after 7 months
Dendritic cell-derived  Large-scale interferon- Immunisation with exosomes loaded Phase Il Ongoing [80]

exosomes gamma vaccines with tumour antigens

EV extracellular vesicle, GM-CSF granulocyte-macrophage colony-stimulating factor, MAGE melanoma-associated antigen, MSC mesenchymal stem cell
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that of recombinant biopharmaceuticals, genetic ma-
nipulation of producer cells is not required for EV pro-
duction because all cells secrete them naturally. Of the
three companies developing EVs for commercial use
nowadays, two are producing them from primary cells
that are being explored therapeutically—Capricor Inc.,
specialized in cell therapy for applications in heart and
muscle diseases (http://capricor.com); and ReNeuron
Group PLC, specialized in cell therapy for applications
neurological and ischemic conditions (http://www.re-
neuron.com)—and just one company has attempted to
start de novo EV therapeutic development—Anosys Inc.,
started with the aim of manufacturing autologous DC-
derived EVs as cancer vaccine (http://chromos.com).

However, it is important to bear in mind the pros and
cons of both options: while cell lines are less character-
ized and may induce oncogenic effects, primary cells
have been extensively studied and reduce the risk of im-
munological rejection [81], which in some cases has
been avoided by using autologous EVs [76, 77]. In gen-
eral, primary cells have lower vesicle yield and limiting
passage numbers, which make them harder to use to
generate a cell bank. It is also worth mentioning that the
US FDA has approved some cell lines for vaccine pro-
duction. These cells have undergone extensive testing
for oncogenic potential and for the presence of endogen-
ous viruses. Particularly, Crucell (now Janssen; http://
crucell.com/about-us) has developed a proprietary fully
tested PER.C6° human cell-line technology previously
used for vaccine production. Some other EVs sources
like non-mammalian cells (bacteria, yeast and plant
cells) are also considered, but their clinical potential is
currently being studied [67].

Isolation techniques represent one of the major issues
concerning EV therapeutics. Currently, there is no reli-
able method for either basic research or for more trans-
lational applications [81]. So far, the most common
strategies to purify EVs for clinical applications have
been ultrafiltration to concentrate the conditioned
medium followed by ultracentrifugation into a sucrose
cushion [82] or a polyethylene glycol 6000 precipitation
method [78]. However, undesirable co-isolation of con-
taminants (i.e. protein aggregates and incomplete separ-
ation of vesicles from lipoproteins) is likely to occur.
Overcoming this issue, currently chromatography-based
methods appear very promising. Specifically, size exclu-
sion chromatography (SEC) has been demonstrated to be
efficient for EV isolation in a single-step process [83, 84].

These or any other methods need to be reproducible,
with short processing times, and capable of maintaining
EV functional properties and avoiding contaminants and
impurities. Depending on the application, aspects such
as the purity or the homogeneity/heterogeneity of the
sample must be also taken into account, since different
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isolation techniques have been shown to influence EV
integrity and biodistribution in vivo. Finally, storage
conditions for EVs must be optimized and validated.
For example, in order to conserve EV functional and
physical properties, isotonic buffers to prevent pH shifts
during freezing and thawing procedures and during
storage should be used. Storage temperature also has to
be established. Besides, EVs can unexpectedly bind to
certain materials, so containers for long storage have to
be chosen carefully since they can affect the quality of
the sample.

Characterization and evaluation of quality aspects

The EV content of given samples should be quantified
and the average size distribution and their protein con-
centration have to be determined [81]. Methods for
characterization are emerging and developing. Some
routinely used methods include transmission electron
microscopy (TEM), fluorescence microscopy, flow cy-
tometry or nanoparticle tracking analysis (NTA). Since
each method shows its own limitations, it is important
to take into consideration the original sample from
where EVs will be isolated, because different efficiency
rates have been observed for each method depending on
the source of the sample [84]. As a general rule, the
presence of at least three or more categories of EV-
specific marker and non-EV-specific proteins should be
analysed in a semi-quantitative manner. Additional
markers to identify the presence of impurities should be
included.

Basic biological and pharmaceutical questions must be
covered

A deeper knowledge of the action and biological func-
tion of EVs is required. Biological assays are needed to
test them for therapeutic applications. Assays must be
designed specifically for each application, considering all
aspects regarding their interpretation, feasibility and re-
producibility. Importantly, dose-finding studies as well
as cytotoxicity assays have to be performed. Accordingly,
the route of administration also has to be defined. As
already discussed, this can affect the biodistribution of
the EVs so the administration route has to be carefully
analysed for each of the particular applications considered.
Immune response and tumorigenic effects also need to be
checked in a systematic way.

The need for standardization concerning these first
three issues remains a major issue for translational appli-
cation of EVs. Current companies are putting their ef-
forts towards the development and improvement of an
adequate infrastructure (technical equipment according
to pharmaceutical manufacturing standards) and a quality
management system (implementation of manufacturing
procedures according to pharmaceutical standards).
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Complicated regulatory issues must also be solved.
Current legislation at least in the United States and Eur-
ope does not provide specific regulation of EV-based
therapies, and thus the definition of ‘biological medicine’
(a medicine that contains one or more active substances
made by or derived from a biological cell) is applicable
for EV-based therapeutics. This pharmaceutical classifi-
cation harbours special challenges with regard to
pharmaceutical manufacturing and preclinical safety
testing. Following standardized production, biological
medicinal products have to be characterized by a com-
bined approach of testing the expected active substances
(i.e. safety, pharmacology, pharmacodynamics and toxi-
cology testing) and the final medicinal product together
with a tight assessment of the pharmaceutical produc-
tion processes and associated controls. Production has
to be performed under compliance with GxP regulations
(Good Manufacturing/Good Laboratory/Good Distribu-
tion/Good Clinical/Good Scientific Practice or GMP/
GLP/GDP/GCP/GSP). In fact, regulatory agencies are
monitoring manufacturers through periodical inspec-
tions with respect to their adherence to GxP standards
such as the FDA’s Center for Biologics Evaluation and
Research (CBER) and FDA in the United States, the
Competent Authorities of European Member States and
the European Medicines Agency (EMA) in Europe, the
Ministry of Health, Labour and Welfare (MHLW) in
Japan and the Therapeutic Goods Administration (TGA)
in Australia.

Commercialization
Biotechnology companies are moving their activity to-
wards therapeutic applications for EVs. Several compan-
ies have already commercialized methods for isolation
and purification (e.g. System Biosciences, Life Technolo-
gies, Qiagen, HansaBioMed, Cell Guidance Systems and
Exosome Diagnostics) [67]. However, several technical
and safety issues must be solved before EVs are finally
translated into clinics. Diagnostics is, on the other hand,
a very interesting and promising application for EVs that
some companies are already exploiting. The majority of
these companies are focusing mainly on cancer, since a
lot of work has already been done reinforcing the idea of
EVs as good biomarkers for diagnosis or to predict or
monitor a patient’s response to treatment [85]. A good case
is Exosome Diagnostics (http://www.exosomedx.com),
which is offering pharma services for clinical trials,
from biomarker discovery through validation and com-
panion diagnostics, so far being the only platform that
allows exploration and validation of RNA and DNA
from biofluids.

Although clinical evaluation of EV therapeutics is still
at an early stage, it is rapidly expanding.
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Conclusions

Promising results obtained over the last decades high-
light EVs as candidates for therapeutic approaches in
regenerative medicine. Preclinical and laboratory data
show promising effects of EV-mediated therapy in rele-
vant models of neurological, cardiac and intestinal
diseases. Major aspects of traditional regenerative
medicine approaches have been demonstrated to be
modifiable by cell-free approaches facilitating EVs, in-
cluding ECM modification, angiogenesis, tissue protec-
tion and immunomodulation.

Although some clinical trials have been already con-
ducted to evaluate the impact of EVs in models of can-
cer, there is a great expectation from the results in the
field of regenerative medicine. To further progress in
the field of EVs, continuing efforts must be done to
overcome all issues raised and discussed in this review,
thus allowing EVs to be translated from basic research
to clinics, especially in the context of regenerative
medicine.

EV-mediated therapy, if able to overcome the limita-
tions named, could combine designed, personalized and
specific medicine. EVs display a cell-free approach to re-
generative medicine mirroring the results that have been
demonstrated for somatic and stem cell approaches.

For future considerations, recent developments in the
understanding of the preclinical and academic know-
ledge of the heterogeneity of EVs underline the need for
improved standardizations of the protocols used for iso-
lation and storage, and definition of the criteria for
characterization and quality control. The aspects named
must be taken into account when considering EVs as
candidates for regenerative medicine. Thus, it is import-
ant to well define the role that they exert in essential
processes important for regeneration and the methods
for delivery. These issues are the current matter of dis-
cussion and the main concern of experts in the field
nowadays.

Note: This article is part of a thematic series on Extracellular
vesicles and regenerative medicine edited by Jeffrey Karp, Kelvin
Ng and Armand Keating. Other articles in this series can be

found at http://stemcellres.com/series/EVRM.
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