Open Access Highly Accessed Open Badges Research

Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization

Tullia Maraldi1*, Massimo Riccio1, Alessandra Pisciotta1, Manuela Zavatti1, Gianluca Carnevale1, Francesca Beretti1, Giovanni B La Sala2, Antonella Motta3 and Anto De Pol1

Author Affiliations

1 Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41100 Modena, Italy

2 Department of Obstetrics and Gynecolgy, Arcispedale Santa Maria Nuova, V. le Risorgimento 80, Reggio Emilia 42100, Italy

3 BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, Via Mesiano 77, 38123 Trento, Italy

For all author emails, please log on.

Stem Cell Research & Therapy 2013, 4:53  doi:10.1186/scrt203

Published: 21 May 2013



The main aim of this study is to evaluate potential human stem cells, such as dental pulp stem cells and amniotic fluid stem cells, combined with collagen scaffold to reconstruct critical-size cranial bone defects in an animal model.


We performed two symmetric full-thickness cranial defects on each parietal region of rats and we replenished them with collagen scaffolds with or without stem cells already seeded into and addressed towards osteogenic lineage in vitro. After 4 and 8 weeks, cranial tissue samples were taken for histological and immunofluorescence analysis.


We observed a new bone formation in all of the samples but the most relevant differences in defect correction were shown by stem cell–collagen samples 4 weeks after implant, suggesting a faster regeneration ability of the combined constructs. The presence of human cells in the newly formed bone was confirmed by confocal analysis with an antibody directed to a human mitochondrial protein. Furthermore, human cells were found to be an essential part of new vessel formation in the scaffold.


These data confirmed the strong potential of bioengineered constructs of stem cell–collagen scaffold for correcting large cranial defects in an animal model and highlighting the role of stem cells in neovascularization during skeletal defect reconstruction.

Bone; Collagen scaffold; Regenerative medicine; Stem cells; Vascularization